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Sparse matrix transform
for hyperspectral image processing

James Theiler, Guangzhi Cao, Leonardo R. Bachega, and Charles A. Bouman

Abstract—A variety of problems in remote sensing require
that a covariance matrix be accurately estimated, often from
a limited number of data samples. We investigate the utility of
several variants of a recently introduced covariance estimator
– the sparse matrix transform (SMT), a shrinkage-enhanced
SMT, and a graph-constrained SMT – in the context of several
of these problems. In addition to two more generic measures
of quality based on likelihood and the Frobenius norm, we
specifically consider weak signal detection, dimension reduction,
anomaly detection, and anomalous change detection. The esti-
mators are applied to several hyperspectral data sets, including
some randomly-rotated data, to elucidate the kinds of problems
and the kinds of data for which SMT is well or poorly suited.
The SMT is based on the product of K pairwise coordinate
(Givens) rotations, and we also introduce and compare two novel
approaches for estimating the most effective choice for K.

Index Terms—covariance matrix, hyperspectral imagery,
matched filter, signal detection, change detection, anomaly de-
tection, anomalous change detection, sparse matrix transform

EDICS Category: MDS-ALGO, SAM-SENS

I. INTRODUCTION

THE COVARIANCE matrix is a key component in a
wide array of statistical signal processing tasks applied to

remote sensing imagery from multispectral and hyperspectral
sensors. If we let x ∈ Rp correspond to the p spectral
components at a given pixel, then the distribution of these
pixels over the image can be described statistically in terms
of an underlying probability distribution. For a Gaussian
distribution, the parameters of interest are the mean and the
covariance. Let R ∈ Rp×p be the “actual” covariance matrix
for this distribution, and suppose that x1, . . . ,xn are are
samples drawn from the distribution. The aim of covariance
estimation is to compute a matrix R̂ that is in some sense close
to the actual, but unknown, covariance R. What we mean by
“in some sense” is that R̂ should be an approximation that
is useful for the given task at hand. The maximum likelihood
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solution is one such approximation, but particularly when the
number of samples n is smaller than the number of channels p,
this solution tends to over-fit the data. For this reason, a variety
of regularization schemes have been investigated [1], [2], [3],
[4], [5], [6], [7], [8]. The sparse matrix transform (SMT) [9],
[10], [11] is a recent addition to this list.

When there are many more pixels than channels, the prob-
lem of estimating covariance matrix is not a serious issue.
But this is not always the case. Moving-window methods, for
instance, seek to better characterize the local statistics of an
image and in this case have many fewer pixels with which
to estimate those statistics. Cluster-based methods, which
segment the image into a large number of spectrally (and in
some cases, spatially) distinct regions, have fewer pixels per
cluster than are available in the full image. More sophisticated
models, such as Gaussian mixture models, also provide fewer
pixels per estimated covariance matrix. In addition to reducing
the number of pixels available to estimate a covariance matrix
of a given size, there are also methods, such as spatio-spectral
enhancements, which add many more channels to the image
by incorporating local spatial information into each pixel.
The choice of window size or cluster number or number
of spatio-spectral operators is often influenced by the need
to estimate a good covariance matrix. By providing a tool
to more accurately estimate a covariance matrix with fewer
pixels, these approaches may be further extended.

Many different measures are possible for the quality of an
estimate R̂, and the choice of which estimator is best can
depend on which measure is used. In [9], [10], the effective-
ness of the covariance estimator was expressed in terms of
the Kullback-Leibler distance between Gaussian distributions
using R and R̂, while [11] compared estimators based on their
utility for weak signal detection.

The purpose of this paper is to evaluate performance on
covariance matrices that are observed in real hyperspectral
imagery. The evaluation will be in terms that correspond to
problems that arise in remote sensing. In addition to the weak
signal detection problem that we investigated previously [11],
we will consider dimension reduction, anomaly detection, and
anomalous change detection. This is in addition to two more
generic measures: likelihood and Frobenius distance.

We will begin our exposition in Section II by describing the
various covariance estimators that we will compare, including
the SMT. In Section III, we will expand on the SMT estimator
by introducing two new approaches for choosing the model
order of the SMT. The actual datasets we will use are described
in Section IV, and in Section V we compare these estimators
on these datasets using a range of generic and remote sensing
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metrics. These constitute the main results of this paper. But
in Section VI, we consider a recently introduced variant,
called graph-constrained SMT [12], and apply that to some
of these problems. As a final control experiment, we consider
in Section VII the problem of estimating randomly rotated
covariance matrices. Finally we summarize our conclusions in
Section VIII.

II. COVARIANCE ESTIMATORS

The sample covariance is the most natural and most com-
monly employed choice for estimating covariance from data.
In this section, we will review the justification for the sample
covariance, and describe several alternatives, all of which use
the sample covariance as a starting point.

A. Sample covariance

Given n data samples (which, in the case of hyperspectral
imagery, are pixels) of dimension p (spectral channels), or-
ganized into a data matrix X = [x1x2 . . .xn] ∈ Rp×n, the
sample covariance is given by S = 1

nXXT =
〈
xxT

〉
, where

the angle brackets correspond to the average over the n pixels.1

Here, S is a p×p matrix: the diagonal components indicate the
magnitude of variation of each of the p spectral channels, and
the off-diagonal elements measure the extent to which pairs
of channels co-vary with each other.

For a p-dimensional Gaussian distribution with zero mean
and covariance matrix R ∈ Rp×p, the likelihood of observing
the data X is given by

`(X|R) =
|R|−n/2

(2π)np/2
exp

[
−1

2
trace

(
XT R−1X

)]
. (1)

We note that

trace
(
XT R−1X

)
= trace

(
R−1XXT

)
= n trace

(
R−1S

)
(2)

where S = 1
nXXT is the sample covariance. This shows that

S is a sufficient statistic for characterizing the likelihood of
data X . And we can write

`(S|R) =
|R|−n/2

(2π)np/2
exp

[
−n

2
trace

(
R−1S

)]
. (3)

When S is full rank, it is a straightforward exercise [10] to
show that this likelihood is maximized when R = S. That
is to say: the sample covariance is the maximum likelihood
estimate of true covariance.

Particularly when the number of data samples is small,
however, the sample covariance can over-fit the data. For
instance, when n < p, the sample covariance is necessarily
singular, whether or not the actual matrix R is singular. For
large n, the sample covariance is a useful estimator in its own
right; but even for small n, it provides a starting point for
other, more sophisticated, estimates.

1For convenience of notation, and because the mean is much easier to
estimate than the covariance, we assume means have been subtracted from
the data, so that 〈x 〉 = 0.

B. Shrinkage

The notion of shrinkage is based on the intuition that a
linear combination of an over-fit sample covariance S with
some simple under-fit approximation to R will lead to an
intermediate approximation that is “just right.” A positive
linear combination shrinks the over-fit estimate toward the
simple approximation. The simplest and most well-known of
these uses the identity matrix I as the under-fit approximation.
Actually, a better choice is (1/p)trace(S) I because it has
the same “size” (specifically, the same trace) as the sample
covariance S. That is,

R̂S−I = (1− α)S + α(1/p)trace(S) I (4)

This is sometimes called “ridge” regularization or regularized
discriminant analysis [1]. An alternative shrinkage target,
proposed by Hoffbeck and Landgrebe [2], uses the matrix
D = diag(S) which agrees with the sample covariance on the
diagonal entries, but shrinks the off-diagonal entries toward
zero:

R̂S−D = (1− α)S + αD. (5)

For both of these estimators, we employ the leave-one-out
cross-validation scheme suggested by Hoffbeck and Land-
grebe [2]. Although not investigated here, we remark that
a number of other shrinkage-based estimators have been
proposed [3], [4], [5], [6], [7], [8].

C. Sparse matrix transform (SMT)

Consider a decomposition of the actual covariance matrix
into the product R = EΛET where E is the orthogonal
eigenvector matrix and Λ is the diagonal matrix of eigenvalues.
We will similarly decompose the problem of estimating R into
the two problems of estimating E and estimating Λ.

In particular, jointly maximizing the likelihood in Eq. (3)
with respect to E and Λ results in the maximum likelihood
(ML) estimates [10]

Ê = arg minE∈Ω

{∣∣diag
(
ET SE

)∣∣} , (6)

Λ̂ = diag
(
ÊT SÊ

)
, (7)

where Ω is the set of allowed orthogonal transforms. Then
R̂ = ÊΛ̂ÊT is the ML estimate of the covariance.

If Ω is the set of all orthogonal matrices (and S is full rank),
then, as previously noted, the ML estimate of the covariance
is given by the sample covariance: R̂ = S. The key idea with
the SMT is to restrict the set Ω.

In particular, we approximate E with a series of K Givens
rotations, each of which is a simple rotation of angle θ about
two axes i and j. Each rotation is given by a matrix of the
form G = I + Θ(i, j, θ) where

Θ(i, j, θ)rs =


cos(θ)− 1 if r = s = i or r = s = j
sin(θ) if r = i and s = j
− sin(θ) if r = j and s = i
0 otherwise.

(8)
Let Gk denote the kth Givens rotation in a sequence. Then

we can write EK = G1G2 · · ·GK as the product of K Givens



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 3

• Input: Sample covariance matrix S
• Input: Number of rotations K
• Initialize: S0 = S
• Initialize: F so that Fij = S2

ij/ (SiiSjj)
• Loop over k = 1 . . .K

– Find Gk = argminG

∣∣diag
(
GT Sk−1G

)∣∣
∗ Let (i, j) = argmaxijFij

∗ Let θ = 1
2atan (−2(Sk−1)ij , (Sk−1)ii − (Sk−1)jj)

∗ Let Gk = I + Θ(i, j, θ)
– Update: Sk = GT

k Sk−1Gk

– Update: Fij = (Sk)2ij/ ((Sk)ii(Sk)jj)

• Estimate eigenvector matrix: Ê = G1G2 · · ·GK

• Estimate eigenvalue matrix: Λ̂ = diag(SK)
• Output: estimated covariance matrix R̂SMT = ÊΛ̂ÊT

Fig. 1. Pseudo-code for sparse matrix transform. For simplicity of exposition,
the algorithm shown here assumes that the number of rotations, K, is known
beforehand. In practice, we use methods described in Section III to determine
K during the iteration.

rotations. The idea is to use EK to approximate the eigenvector
matrix associated with the true covariance matrix R. The
algorithm for finding the Gk’s, given the sample covariance
S, is shown in Fig. 1 and described in fuller detail in [9],
[10]. The aim is to produce an estimate of the eigenvector
matrix E that is sparsely parametrized by a limited number
K of rotations. Since the optimal E (in the sense of maximum
likelihood) minimizes the product of the diagonal elements of
the rotated matrix ET SE, each step of the SMT is designed to
find the single Givens rotation that does the most to minimize
this product. The SMT algorithm nominally requires O(Kp2)
computations, since there are K rotations, and the updates to
the matrix F and the “argmax” of the matrix F appear to
require O(p2) effort. However, the updates to F only affect
O(p) of the elements, and it is possible to keep track of the
maximum at each iteration with only O(p) effort per iteration.
Thus, an efficient implementation of SMT can be performed
with O(Kp) + O(p2) effort. In Section VI, we describe an
extension of the SMT, based on graphical constraints, that can
lead to further reduction in computational resources, ultimately
requiring only O(p log p) effort [12].

Finally, we remark that we can also use SMT as a shrinkage
target to produce another covariance estimator,

R̂S−SMT = (1− α)S + αR̂SMT , (9)

which was introduced along with straight SMT by Cao and
Bouman [10]. As with the shrinkage estimators in Section II-B,
we choose α based on leave-one-out cross-validation [2].

III. CHOOSING MODEL ORDER FOR THE SMT

Cao and Bouman [9], [10] recommended estimating the
model order K (i.e., the number of Givens rotations) for the
SMT covariance estimator using a cross-validation approach.
This is a reasonable and effective approach, but requires
roughly a factor of t times the effort, if t-fold cross-validation
is used. The authors recommend t = 3. In this section, we
introduce two alternatives which are simpler to implement, and

do not add significantly to the computation time in learning
the SMT from data.

A. Heuristic Wishart criterion
The idea behind the first criterion is to continue applying

Givens rotations (i.e., increasing K) until the matrix ET
KSEK

is “statistically consistent” with a diagonal matrix. Statis-
tical consistency is measured with respect to the Wishart
distribution [13], which describes the distribution of sample
covariance matrices, computed from samples drawn from a
Gaussian distribution with a parent covariance.

Specifically, the Wishart describes the distribution of XXT ,
where X is a p×n matrix, each column of which is drawn from
a p-dimensional Gaussian. So the distribution of the sample
covariance S = (1/n)XXT is given by S ∼ (1/n)W(R,n)
where R is the covariance of the parent distribution.

If W ∼ W(I, n) is the random variable that corresponds to
a normalized Wishart-distributed matrix, then we have 〈W 〉 =
nI where 〈 · 〉 corresponds to expectation. Further, one can
show that the element wij of the matrix W has variance given
by Var(wij) = n for i 6= j. We also have Var(wii) = 2n,
though we don’t use that in the statistic we will propose below.

Suppose after K SMT rotations, providing approximate
eigenvector matrix EK , we write SK = ET

KSEK which
is a “nearly” diagonal matrix. Write ΛK = diag(SK) as
the diagonal elements of SK . And consider the “correlation”
matrix S̃K = Λ−1/2

K SKΛ−1/2
K = Λ−1/2

K ET
KSEKΛ−1/2

K . If K

is adequately large, then we expect S̃K to be adequately close
to the identity; roughly, we expect S̃K to be distributed as a
normalized Wishart.

Now, if we write SKij as the ijth component SK , then
the ijth component of S̃K = Λ−1/2

K SKΛ−1/2
K will be

given by S̃Kij = SKij/
√

SKiiSKjj . If we have completed
enough rotations that S̃K ∼ (1/n)W(I, n), then we expect
Var(SKij/

√
SKiiSKjj) =

〈
S̃2

Kij

〉
= 1/n.

Note that FKij = S̃2
Kij is a quantity that we track any-

way, when we execute the SMT algorithm. We maintain Fij

throughout the computation, and use argmaxFij to determine
the ij pair to next rotate about. If, while we are doing this,
we follow the average of Fij (averaged over the non-diagonal
elements of the matrix), we can stop rotating when then
average is O(1/n). It bears remarking that the average of Fij

can be tracked with only O(p) computation per rotation.
Two further comments are in order. One, we have assumed

that the correct number of rotations will produce a Wishart
distribution, but this would be the case only if the rotations
we applied to S were precisely the same rotations that we
would have applied to R. In fact, these rotations are adapted to
push S (not R) towards a diagonal matrix as fast as possible.
By the time the average value of Fij reaches 1/n, we can
expect that some over-fitting has already occurred. As a second
comment, we note that we would prefer to slightly under-
fit rather than over-fit our estimate to R; that way when we
shrink against S to produce R̂S−SMT , we are balancing an
over-fit S with an under-fit RSMT covariance. For these two
practical considerations, we consider a modified criterion to
stop rotating when the average Fij reaches 2/n.
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B. An MDL approach to estimating model order

An alternative, and arguably less heuristic, approach than
the Wishart-based method suggested above, employs the con-
cept of minimum description length (MDL).

Using the standard prescription [14] (see also [15]), we
consider the description length of a model MK that contains K
continuous parameters (angles θ), and 2K discrete parameters
(axes i, j), to explain data with pn scalars. The description
length for such a model is given by

DK = − log `(X|MK) +
1
2
K log(pn) + 2K log p (10)

where the first term is the log likelihood associated with the
model, the second term corresponds to the bits in the K angle
parameters, and the third term is for bits in the K discrete i, j
pairs. The log likelihood follows from Eq. (3)

log `(X|R) = −n

2
[
p log(2π) + log |R|+ trace

(
R−1S

)]
,

(11)
where S = 1

nXXT is the sample covariance. Let SK =
ET

KSEK , be the approximately diagonalized sample covari-
ance, and let ΛK = diag(SK) be the diagonal elements of
SK . Then, for SMT, we have that R̂ = EKΛKET

K , and so
trace

(
R̂−1S

)
= trace

(
EKΛ−1

K ET
KS

)
= trace

(
Λ−1

K SK

)
= p

regardless of K. Thus, up to an additive constant,

DK =
n

2
log |ΛK |+

1
2
K log(pn) + 2K log p

=
n

2

p∑
i=1

log λKi +
1
2
K log(pn) + 2K log p, (12)

where λKi is the ith diagonal element of SK .
In general, DK will initially decrease with increasing K

(model gets better with more rotations, and λKi decreases),
but as K continues to grow so does the penalty term. We are
seeking the value K where DK is minimized (the so-called
minimum description length), and so is no longer improved
with increasing rotations. We want the first K for which
DK+1 −DK ≥ 0. That is:

n

p∑
i=1

log λ(K+1)i + (K + 1) log(pn) + 4(K + 1) log p

−n

p∑
i=1

log λKi −K log(pn)− 4K log p ≥ 0. (13)

Or:

n

p∑
i=1

log λ(K+1)i/λKi ≥ − log(pn)− 4 log p. (14)

If the Kth rotation is over axes i, j, then only those two axes
are affected:

n log
λ(K+1)iλ(K+1)j

λKiλKj
≥ − log(pn)− 4 log p. (15)

But we have from [9] that

λ(K+1)iλ(K+1)j

λKiλKj
= 1−

S2
Kij

SKiiSKjj
= 1− FKij . (16)
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Fig. 2. Number of rotations K chosen by different criteria, as a function of
data samples n, for two different hyperspectral covariance matrices. MaxLike
is the K that gives the best likelihood function with respect to the real
covariance; it is in some sense the “true” K but it is generally unavailable
because it requires knowing the true R. CrossVal is three-fold cross-validation.
All of the curves are based on three trials, and use the ‘Cape’ dataset.

where FKij is the ij element of the squared correlation matrix
that is maintained throughout the computation. As a general
trend, FKij decreases with K though it is not monotonic.
Thus, Eq. (15) becomes a condition on FKij

n log(1− FKij) ≥ − log(pn)− 4 log p (17)

or

FKij ≤ 1− exp
[
−(log n + 5 log p)

n

]
, (18)

and we remark that the ij in this case is the one for which
FKij is maximum. Thus:

maxijFKij ≤ 1− exp
[
− log n− 5 log p

n

]
(19)

is the MDL-based stopping condition. When n is large, so
that n � log(pn), then this becomes maxijFKij ≤ (log n +
5 log p)/n.

C. Comparison of model order estimators

In addition to the Heuristic Wishart and MDL-based esti-
mators for K, Fig. 2 includes the cross-validation estimator
(CrossVal), and an estimator (MaxLike) that is not generally
available in practice because it requires knowledge of the ac-
tual covariance R. MaxLike is the choice of K that maximizes
the likelihood `(R, R̂K). The plot shows how the estimated
K varies with n for these different model order estimation
schemes. For all of these estimators, we observe that as more
data is available, larger model orders are called for.

For the experiments in subsequent sections, we use the MDL
criterion in Eq. (19) to choose the model order K for the sparse
matrix transform.
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IV. HYPERSPECTRAL DATA SETS AND THEIR COVARIANCE
MATRICES

To investigate SMT for hyperspectral signal processing,
we have performed some experiments on datasets that are
summarized in Table I. The set ‘Cape’ is a 150 × 500 chip
taken over the coast of Florida, near Cape Canaveral, using
the 224-channel AVIRIS sensor [16]. We used this AVIRIS
data in one of our earlier studies of SMT [11]. The set ‘Mall’
is a 1280 × 307 pixel 191-channel HYDICE image of the
mall in Washington DC [17]. For the ‘Blind’ set, we use
one of the four images (“blind radiance”) provided as part
of the RIT Blind Test dataset [18]. For the change detection
experiment, we used both the blind radiance and the “self”
radiance images. Both of these images are 800 × 280 pixels
and have 126 spectral channels.

In Section VII, we will consider randomly rotated variants
of these datasets; this provides a kind of control experiment
which illustrates the importance of the choice of coordinate
system for the SMT estimator.

V. MEASURES OF QUALITY FOR COVARIANCE ESTIMATION

In this section we investigate the performance of the covari-
ance estimators we introduced in Section II. We will begin
with some generic measures of quality, the likelihood and two
statistics based on Frobenius norm. Then we will consider four
measures that are more directly based on problems that arise in
hyperspectral imagery: signal detection, dimension reduction,
anomaly detection, and anomalous change detection.

A. Likelihood

Following previous comparisons of SMT and other covari-
ance estimators [9], [10], we begin with a likelihood measure.
If R̂ is a covariance estimator, then `(S|R̂) as defined in
Eq. (3) is the likelihood of observing a sample covariance S.
Our measure of accuracy for R̂ is how likely it would be to
observe the actual covariance; in particular we use `(R|R̂).
Specifically, we use (1/n) log `(R|R̂), or

−1
2

[
p log(2π) + log |R̂|+ trace

(
R̂−1R

)]
(20)

as the likelihood measure that is plotted in Fig. 3 for different
estimators of different covariance matrices, obtained from the
data described in Section IV.

B. Frobenius norm

The most straightforward way to assess how accurately R̂
approximates R is by element-wise comparison. A natural way
to do this is in terms of the Frobenius norm:

||R̂−R||F =
√∑

ij

(R̂ij −Rij)2, (21)

where || · ||F indicates the Frobenius norm. It is the square
root of the sum of the squares of the elements in the matrix.
As Fig. 4(a) shows, the sample covariance provides a good
estimate of R in the direct Frobenius sense of Eq. (21).

For many remote sensing (and other signal processing)
applications, it is not R that one needs to estimate, but its

inverse R−1. It is possible to find an approximation R̂ that
matches R very closely (in the sense that Eq. (21) is small)
but for which R̂−1 is a poor approximation to R−1. For
instance, for n < p, the sample covariance estimator is not
even invertible. This suggests a second measure for the utility
of an approximation:

||R̂−1 −R−1||F (22)

In Fig. 4(b), this measure is plotted for the various covariance
approximators described in Section II. Further plots in Fig. 5
show the performance for the variety of covariance matrices
introduced in Section IV.

C. Matched filter signal detection

Given a weak signal t, one seeks a filter q ∈ Rp which,
when applied to an observation x, gives a scalar value qT x
which is large when x contains signal t and is small otherwise.
In particular, the aim is to distinguish two hypotheses:

H0 : x ∼ N (0, R) (23)
H1 : x ∼ N (at, R) for some a 6= 0, (24)

where N (µ, R) indicates a normal distribution with mean µ
and covariance R. Following the argument in [11], the signal-
to-clutter ratio for a filter q is given by

SCR =
(qT t)2

〈 (qT x)2 〉
=

(qT t)2

qT 〈xxT 〉q
=

(qT t)2

qT Rq
(25)

The matched filter is the vector that optimizes the SCR, and
it is given, up to a constant multiplier, by q = R−1t. Using
this q in Eq. (25), we get the optimal SCR:

SCRo =
(tT R−1t)2

tT R−1RR−1t
= tT R−1t. (26)

If we approximate the matched filter using an approximate
covariance matrix R̂, then q̂ = R̂−1t gives

SCR =
(tT R̂−1t)2

tT R̂−1RR̂−1t
(27)

and the SCRR is the ratio

SCR
SCRo

=
(tT R̂−1t)2

(tT R̂−1RR̂−1t)(tT R−1t)
. (28)

If R̂ = R, then SCRR = 1, but in general SCRR ≤ 1.
In Fig. 6, SCRR is plotted against number of samples n for

the three covariance matrices under consideration. Although
the magnitude of t does not affect SCRR, the direction does,
and the results shown are based on an average of ten trials,
each one using a different randomly chosen t. The distribution
of directions for t is isotropic, since each component is drawn
from an independent Gaussian distribution.
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Fig. 3. Log likelihood measure of fitness, as a function of number of samples n, for the ’Cape’ and ’Mall’ covariance matrices. Larger values indicate better
estimates. The vertical dashed line corresponds to n = p.

(a) ||R̂−R||F (b) ||R̂−1 −R−1||F

10
1

10
2

10
3

10
4

10
6

10
7

10
8

Number of samples

F
ro

b
e

n
iu

s
 d

is
ta

n
c
e

 

 

Sample
SMT
S−I
S−D
S−SMT

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

Number of samples

F
ro

b
e
n
iu

s
 d

is
ta

n
c
e

 

 

Sample

SMT

S−I

S−D

S−SMT

Fig. 4. The best estimator of the inverse is not necessarily the inverse of the best estimator. This figure shows how estimation quality varies with the number
n of samples, where quality is defined by the Frobenius norm of the difference, for (a) the covariance matrix directly, and (b) the inverse covariance matrix.
For direct covariance estimation, all of the estimators show generally the same performance, and in fact S-I, S-D, and sample covariance all show nearly
identical performance. By contrast, there is quite a bit of difference in the performance of these estimators at estimating the inverse. In this case, the SMT
algorithms are substantially better over a broad range the includes n = O(p), with S-SMT showing a distinct advantage over straight SMT for larger n. The
vertical dashed line corresponds to n = p. Results are based on ten trials, using R from the ‘Cape’ dataset.
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Fig. 5. Same as Fig. 4(b), but for the other two covariance matrices.
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TABLE I
DATA SETS AND COVARIANCE MATRICES

Name Sensor Location p n Comments
Cape AVIRIS Titusville, FL 224 75000 Chip from f960323t01p02_r04_sc01
Mall HYDICE Washington DC 191 392960 Provided on CD in Landgrebe’s book [17]
Blind HyMap Cooke City, MT 126 22400 Blind test: http://dirsapps.cis.rit.edu/blindtest/
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Fig. 6. SCR (signal to clutter ratio) ratio defined in Eq. (28) for the ‘Cape’ and ‘Mall’ covariance matrices. Average of 10 trials (each trial uses a different
signal t and a different set of n samples from the distribution defined by R). Larger values are better.

D. Dimension reduction

In the first q principal components, a large fraction of
the signal variance is typically captured. We can write R =
EΛET , where E is the matrix of eigenvectors, and Λ is a
diagonal matrix of non-negative eigenvalues, which we will
order from largest to smallest: λ1 ≥ · · · ≥ λp. Let Eq

correspond to the first q columns of E. Then the q largest
principal components, given by xq = ET

q x have a variance〈
xT

q xq

〉
= trace

(〈
xqxT

q

〉)
= trace

(〈
ET

q xxT Eq

〉)
= trace

(
ET

q REq

)
= trace

(
ET

q EΛET Eq

)
=

q∑
i=1

λi. (29)

But if R is approximated by R̂ = ÊΛ̂ÊT , then the first q
principal components will be given by Êq instead of Eq, and
the variance will be smaller. Specifically,〈

x̂T
q x̂q

〉
= trace

(〈
x̂qx̂T

q

〉)
= trace

(〈
ÊT

q xxT Êq

〉)
= trace

(
ÊT

q RÊq

)
= trace

(
ÊT

q EΛET Êq

)
=

p∑
i=1

αiλi (30)

where αi =
∑

j(Ê
T
q E)2ji. Note that 0 ≤ αi ≤ 1 and∑p

i=1 αi = q. Since the λi’s are sorted in descending order, it
follows that

∑p
i=1 αiλi ≤

∑q
i=1 λi. Equality holds when Êq

spans the same subspace as Eq; that is: Êq = EqU for some
orthogonal q × q matrix U .

Using q instead of p principal components, one will fail to
capture the variance in the last p− q components:

∑p
i=1 λi −

∑q
i=1 λi =

∑p
i=q+1 λi. This is the best case, and is achieved

when accurate principal components are used. If approximate
principal components are used, then the missing variance is
given by

∑p
i=1 λi −

∑q
i=1 αiλi. Thus the cost of using the

approximation, in terms of missing variance, is given by the
difference:[

p∑
i=1

λi −
q∑

i=1

αiλi

]
−

[
p∑

i=1

λi −
q∑

i=1

λi

]
=

q∑
i=1

(1− αi)λi

(31)
To make this quantity dimensionless, we divide by the missing
variance that would be obtained using accurate principal
components. This gives the relative missing variance that we
use in our plots: ∑q

i=1(1− αi)λi∑p
i=q+1 λi

(32)

We remark that for the SMT case (but not the S-SMT,
unfortunately), the encoding of the Êq matrix as a product
of K Givens rotations provides a computational advantage
in the application of dimension reduction. Instead of directly
multiplying x̂ = ET

q x which requires O(pq) computations,
use x̂ = PqG

T
KGT

K−1 · · ·GT
1 x, where Gk is the kth Givens

rotation, and Pq is the projection matrix that picks off the
q channels with highest variance. This is only O(K) com-
putations [19] and typically K = O(p), as has been shown
previously [9], [10], [12].

In Fig. 7 and Fig. 8, we see that SMT does well at
minimizing the missing variance when n is small and q is
large.
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Fig. 7. (a-c) Missing variance, defined in Eq. (31), when data is reduced to lower dimension, as a function of the lower dimension q; this is for covariance
matrices estimated from n = 10 samples. Smaller values are better, and the dash-dotted black line is the lower bound obtained when the actual covariance
is used. The sample covariance has reduced rank, and does not produce unambiguous estimates beyond q > n. (d) For n = 100, the trend is still seen, but
the effect is much smaller.

E. Anomaly detection

The aim of anomaly detection is to distinguish “typical”
data, which are presumed to be sampled from a parent dis-
tribution, from anomalies (or outliers) that are not. The RX
anomaly detector [20] treats this parent distribution as Gaus-
sian with covariance matrix R, and measures anomalousness
in terms of the squared Mahalanobis distance from the origin.
That is, when

xT R−1x > η2 (33)

for some threshold radius η, then x is considered anomalous.
A proxy for missed detection rate is the volume of the

ellipsoid contained within xT R−1x ≤ η2; it is given by

V (R, η) =
πp/2

Γ(1 + p/2)
|R|ηp. (34)

The false alarm rate is the fraction of the measure for which
xT R̂−1x > η2. Thus, one can for instance vary η and plot
out a “coverage” plot of volume versus false alarm rate, as
proposed in [21]. Alternatively, as done here, one can choose
η so that a given false alarm rate is achieved, and then use

volume as a measure of quality. This is done in Fig. 9, and
it is seen that SMT provides covariance approximations that
provide smaller volumes for a given coverage (here, chosen
as 99.9% of the data). Smaller volumes correspond to fewer
missed detections, and the fixed coverage corresponds to a
constant false alarm rate (here, of 0.1%).

We remark that the anomaly detection problem is closely
related to the likelihood metric described in Section V-A. The
coverage is the fraction of data enclosed by this ellipsoid for
which xT R̂−1x < η2, where x is drawn from the Gaussian
with covariance given by R. We want this fraction to be large,
so we want to choose R̂ so that xT R̂−1x is small. But we
can write

〈
xT R̂−1x

〉
= trace

(
R̂−1R

)
. This encourages us

to make R̂ large (i.e., to have a large ellipsoid) because that
gives a lower false alarm rate. But we also want the ellipsoid
to be small, since the missed detection rate will scale with the
volume of the ellipsoid. This volume in turn scales with the
determinant |R̂|. To trade off these conflicting interests, one
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(c) q = 50 (d) q = 100
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Fig. 8. Relative missing variance, as defined in Eq. (32), as a function of n for various q. For small q, the sample covariance is the best choice, but for
small n and larger q, the SMT variants outperform the sample covariance. Results are based on the ‘Cape’ covariance.

can try to minimize a formula such as

log |R̂|+ trace
(
R̂−1R

)
(35)

which has the same form as the negative log likelihood
function in Eq. (20).

F. Anomalous change detection

In the anomalous change detection problem [22], [23], [24],
[25], the aim is to find the small rare changes, without being
confounded by the pervasive differences between the two
images that might, for instance, be due to camera calibration,
atmospheric conditions, or seasonal variation.

Many of the algorithms for anomalous change detection can
be recast in a formulation that requires the estimation of a
large covariance matrix [24]. For this study we employed the
hyperbolic anomalous change detection (HACD) algorithm,
first introduced in [25]. Following the simulation framework
described in [24], we simulated both the pervasive differences
and the anomalous changes. For one of the cases we used
the actual pervasive differences observed in two images taken
approximately an hour apart [18]. The pervasive differences

are simulated in Fig. 10(a,b,c), but actual pervasive differences
are used in Fig. 10(d).

Whereas SMT provided substantial gains for the straight
anomaly detection problem, the results for anomalous change
detection are more ambiguous. For large sample size n, we
found that SMT did not provide competitive performance
(though S-SMT generally did). For the small n case, there
were some examples (Cape-misreg, Mall-split, and Blind)
where SMT and S-SMT both outperformed the competitors,
and one case (Cape-split) where S-I was superior.

VI. SMT WITH GRAPH-BASED CONSTRAINTS

This section describes results from a recently introduced
variant of SMT, called graph-constrained SMT [12], that has,
as its main advantage, a more computationally efficient im-
plementation when the dimension p is particularly large. The
method also exploits a priori information about the structure
of a covariance matrix, and has the potential for more accurate
estimation than standard SMT provides.

Graph-constrained SMT employs graph-based constraints in
order both to further limit size of the set Ω from Eq. (6),
and to reduce the computational effort required to identify
the Givens rotations G1, . . . , GK . During the computation
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Fig. 9. Volume of ellipsoids that cover 99.9% of the data. Smaller values are “tighter” (and therefore better) fits.

of each of the K Givens rotations in the SMT design, the
greedy search for the most correlated pair of coordinates ij
is replaced by a constrained search over the pairs of nodes
in the graphical structure. As each rotation is designed, the
graphical structure evolves in a way that the neighborhood
relations are re-examined and pruned, with each coordinate
keeping correlation information of no more than m neighbors.

The motivation for using the graphical-SMT in the context
of hyperspectral image processing is based on the observation
that two neighboring bands i and j, such that |i − j| ≤ m/2
for a small threshold m, tend to be among the most correlated
ones. Therefore, we derive a form of graphical constraint
among the pairs of bands and use the graphical-SMT algorithm
to estimate the covariance matrix of the hyperspectral data at
a much lower computational cost than with the standard SMT
algorithm. This suits our purpose particularly well when p is
very large and m can be set to be relatively small, resulting
in O(p log p) computational complexity as opposed to O(p2)
of the standard SMT algorithm without significant differences
in the quality of the resulting estimators [12].

Fig. 11 compares the covariance estimators produced with
both the SMT and the graphical-SMT algorithms as well as
with other methods. The results suggest that both variants of
the SMT algorithm produce similar results over a wide range

of sizes of the training set.
Finally, the number of degrees of freedom is smaller in the

graphical-SMT than in the standard SMT since only the m
most correlated neighbors of each coordinate are considered
during the SMT computation. This fact suggests a minor
modification in the MDL criterion used to choose K. Instead
of Eq. (19), we use

maxijFKij ≤ 1− exp
[
− log n− 3 log p− 2 log m

n

]
, (36)

which accounts for the neighborhood of size m imposed by
the graphical constraint.

VII. RANDOMLY ROTATED COVARIANCE MATRICES

In this section we perform a control experiment to help
explain and delimit the range of situations for which SMT is
most suitable.

One reason SMT outperforms other covariance estimators
is that it takes advantage of the tendency for real data, and
for hyperspectral data in particular, to have its eigenvectors
aligned with the natural axes of the system. This argument
suggests that SMT would lose its power if this alignment were
randomly rotated. In particular, given a covariance matrix R,
and a random orthogonal matrix Q, one can generate a new
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Fig. 10. Performance is measured by the detection rate achieved at a specified false alarm rate. Larger values are better. For the ‘Cape’ data set, the pervasive
differences are simulated: (a) channels are split, so the first 112 channels are considered the first image, and the last 112 channels are taken to be the second
image; (b) the image is smoothed with a 3x3 kernel and translated by one pixel to simulate misregistration. (c) For the ‘Mall’ data, the channels are similarly
split, with 95 bands going to the first image, and 96 to the second image. (d) For the ‘Blind’ dataset, two separate images were used, the “blind radiance”
image and the “self radiance” image.

covariance R′ = QT RQ which will have the same eigenvalues
as R, but the eigenvectors will essentially be random. In
Cao et al. [11], it was argued that structure in the eigenvectors
is what enabled SMT to outperform its competitors.

With that in mind, we performed some experiments with
rotated covariance matrices, shown in Fig. 12. As expected,
neither SMT nor S-SMT did as well as simple shrinkage
against the scaled identity (S-I, in the plots). Even S-D was
outperformed by the rotationally invariant S-I.

VIII. CONCLUSIONS

We have identified a series of signal processing problems
in remote sensing that require, at some stage of the computa-
tion, an estimation of covariance matrices from limited data.
For each of these problems, and in each case for different
hyperspectral data sets, we have applied a suite of covariance
approximation schemes, and compared their performance.

For the likelihood, the Frobenius distance between in-
verses, the matched filter detection of small signals, and the
anomaly detection experiments, the sparse matrix transform

with shrinkage (S-SMT) consistently outperformed the other
estimators. This was most noticeable when the number of
samples n was smaller than the number of channels p. For
n � p, all of the estimators gave similar performance.

The dimension reduction experiments were somewhat en-
lightening. When the reduced dimension q was very small,
we found that the sample covariance actually did a better job
than the other estimators. However, for large q and small n, the
SMT ans S-SMT estimators did the best job. This is consistent
with the intuition that sample covariance does a better job at
estimating the performance of the large eigenvalues, but for
tasks where the small eigenvalues are important, SMT appears
advantageous.

The results with anomalous change detection were mixed.
In some cases the detection rates were higher for SMT and
in other cases, they were lower. This inconclusiveness was
observed even with the same data set (‘Cape’) using different
simulated pervasive differences. For the one case (‘Blind’)
where the pervasive differences were not simulated, the S-
SMT outperformed the other estimators for n < p. We
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Fig. 11. Graph-constrained SMT using m = 16 neighbors. These runs are for a single trial. Panels (a,b) correspond to Fig. 4(b) and Fig. 5(a). Panels (c,d)
correspond to Fig. 6(a,b). We observe that the cheaper graph-constrained SMT provides comparable performance to standard SMT on these problems.

found these results initially surprising, given the definitive
advantage SMT provided for straight anomaly detection. But
where straight anomaly detection seeks anomalies that have
significant components in the eigenspace of the low eigenval-
ues (where SMT seems to work better than competitors), the
anomalous changes have more of (but not all of) their energy
in large eigenvalue components.

We have introduced two new model order estimation
schemes for automatically determining the number K of
Givens rotations to be applied in an SMT estimator. Both
of these schemes can be computed with minimal overhead
since they are both based on values of the squared correlation
matrix F which is already computed as an intermediate step
in the SMT algorithm.

Numerical experiments suggest that the heuristic Wishart
estimator tends to provide an over-estimate of the number
of needed rotations, whereas the minimum description length
(MDL) approach tends to provide an underestimate. When
used with a shrinkage, one generally prefers a smaller K, and
this favors the MDL approach.

To some extent, the occasional failure of S-SMT to out-

perform S-D or the sample covariance can be attributed to
a failure in the choice of model order K. (This failure was
sometimes observed when the number of samples was very
small, n < 10.) That is because SMT with K = 0 is equivalent
to the diagonal matrix D, and SMT with K = O(p2)
approaches the sample covariance.

We described a smaller number of experiments with the
recently introduced graph-constrained SMT [12], and found
that results essentially identical to SMT were obtained using
this more restricted and more computationally efficient variant.
We attribute this to the tendency of hyperspectral data to be
more highly correlated for adjacent wavelengths.

Finally, by comparing the performance of these estimators
on randomly-rotated variants of the real hyperspectral covari-
ance matrices, and finding that the advantages of SMT were
lost, we confirmed the interpretation that SMT is exploiting an
approximate alignment that is empirically observed to occur
the eigenvectors and the natural coordinates of the data.
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Fig. 12. Performance against randomly rotated covariance matrices for the likelihood measure of goodness. Average of 10 trials. (a,b) Log likelihood metric
in Eq. (20): larger values are better; (c,d) Frobenius distance between inverses, defined in Eq. (22): smaller values are better; (e,f) SCR ratio in Eq. (28):
larger values are better.
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